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Subharmonic Solutions of a Forced Wave Equation

Introduction

In a recent paper ;af, we establuhieh the existence of

subharmonic solutions of forced Hamiltonian systems of ordinary

differential equations. The goal of this note is to show that

subharmonics also occur for a class of semilinear wave equations.
To be more precise, let z(t) = (Zl(t),...,Z 2nlt)),

H : 3 2n - R, and consider the Hamiltonian system of ordinary

differential equations:

dz 0 -1
(0.1) = JHz(tz), J = ( I)

where I denotes the identity matrix in Rn. Suppose

H(t,0) = 0, H(t,z) > 0, and H is T periodic in t.

It was shown in [11 that if H satisfies appropriate addi-

tional conditions near z = 0 and z = -, then (0.1)

possesses an infinite number of distinct subharmonic solutions,

i.e. for each k e I, (0.1) has a solution zkt) of

period kT and infinitely many of the functions zk are

distinct. For single second order equations of the form

(0.2) v + g(tv) - 0

with g T-periodic in t, more delicate such results were

obtained earlier under related hypotheses by Jacobowits 121.
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Further work on this question was carried out by Hartman (3]

who weakened the hypotheses of [2] and improved the conclusions.

We will show how analogues of some of the results of [I

can be obtained for a family of forced semilinear wave equations.

Thus consider

( utt - Uxx f(x,t,u) - 0 0 < x < L(0.3) ft-x
Iu(0,t) - 0 - u(It)

where f is T periodic in t. It was shown in [4]

that (0.3) possesses a nontrivial classical T periodic

solution provided that T @ £Q, i.e. T is a rational

multiple of 1, and f satisfies appropriate conditions.

Recently a slightly stronger result has been obtained by Brezis,

Coron, and Nirenberg (5]. In the following section we will

prove that the hypotheses required in [41 for the above existence

theorem imply that (0.3) also has subharmonic solutions: for

all k e IN , (0.3) possesses a kT periodic solution uk

and infinitely many of these functions are distinct. The proof

relies on an amalgam of ideas from [I and [4].

11. The existence theorem

2Suppose f : (0,11 x It * A and satisfies

(f 1 ) f(xt,O) = Of r (x,t,r) 2 0 for 0 0 r near 0,

and f(xt,r) ts strictly monotonically increasing

in r for all r A .

(f2) f(x,t,r) = o(IrI) at 4 - 0

(f3) There are constants p > 2 and >0 such that
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r
0 < iAF(x,t,r) * f f(x,ts)ds < rf(x,t,r)

0

for Irl >r

(f4) There is a constant T > 0 such that f(x,t + T,r)

= f(x,t,r) for all x,t,r.

Note that (f3) implies that

(1.1) F(x,t,r) > aljrIP -a 2

for some constants a1 > 0, a2 > 0 and for all r e 3R,

i.e. F grows at a more rapid rate than quadratic at r = -.

We will prove the following theorem:

Theorem 1.2: Let f e C2 ([0,t] x R2 , 3R) and satisfy

(fl) - (f4). If T e 10, then for all k I , the

problem

(1.3) t t - x x + f(x,t,u) = 0 , 0 < < t

u(0,t) = 0 - u(t,t)

possesses a nonconstant kT periodic solution uk e C

Moreover infinitely many of the functions uk are distinct.

Before giving the proof of Theorem 1.2, several remarks

are in order. Since T e M implies that kT e t for

all k e 3, the first assertion of the theorem is a special

case of Theorem 4.1 and Corollary 4.14 of [4). However, since

we do not know kT is an minimal period of uk, the

functions uk may all represent the same T periodic
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function or possibly a finite number of distinct periodic

functions. Thus what is new and of interest here is that in

fact infinitely many of the functions Uk must be distinct.

To establish this result we will show that on the one hand,

if only finitely many of the functions uk  were distinct, a

corresponding variational formulation of (1.3) would have an

unbounded subsequence of critical values, ck, with corres-

ponding critical points representing reparametrizations of the

same function. The growth of the ckIs will be like k 2

On the other hand it turns out that ck grows at most

linearly in k, a contradiction.

To make this statement, which contains variants of ideas

in (1], more precise, a closer inspection must be made of the

existence mechanism of (4]. For convenience we take I = W

and T = 2w. Fixing k e IN, we seek a solution of (1.3)

which is 2wk periodic in t. It is convenient to rescale

time t = kT so that the period becomes 2w and (1.3)

transforms to

ru - k2 (uxx - f(x,kT,u)) = 0 < x< W
(1.4) XX

(u(O,r) 0 = u(w,ir) u(x,T + 2w) = u(x,T)

The solution of (1.4) is obtained via an approximation

argument. Three approximations are made. First observe that

the wave operator part of (1.4), uT - k2 uxx has an infinite

dimensional null space, N, in the class of functions satis-

fying the periodicity and boundary conditions, namely

-ol
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N = span (sin 3x sin kjc, sin jx con kicli a i1

To provide some compactness for the problem in N, we perturb

the wave operator by adding a term - v TT to it where

8 > 0 and v denotes the L2  orthogonal projection of

u into N. Secondly the unrestricted rate of growth of

f(x,t,r) at Ir = creates technical problems which we

bypass by suitably truncating f, i.e., we replace f by

fK (x,t,r) where fK coincides with f for Irl _ K,

satisfies (f1) - (f4}  with U replaced by a new constant

= min(4,U) in (f3). Moreover fK grows like r3  at

-. (See Eq (5.22) of [4]). Thus we replace (1.4) by

(uTT - BvTT - k 2 (uxx - fK(x,kT,u)) = 0, 0 < x < W(1.5) X Kxku)

U{0,T) - 0 U(W,T); U(X,T + 2w) -U(X,T)

Formally (1.5) can be cast as a variational problem, namely

that of finding critical points of

(1.6) I(u;k,O,K) = 2 f El 2 v- 2 Ux F(k))]dx d2

0 0

where FK is the primitive of f Our final approximation

is to pose this variational problem in a finite dimensional space

Em = span(sin jx sin nT, sin jx cos nTIO < J, n < m)

A critical point of lIE will be a solution of the L2

orthogonal projection of (1.5) onto BLm. . 7.
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of i to establish the existence of a nontrivial critical

'point u m of II Z as well as an estimate on the corres-

ponding critical value cmk of the form

(1.7) 0 <cmk - I(umkvk,8K) < Nk

where Mk is a constant independent of 0,K, and m.

Further arguments in [4) allow successively letting M

and 8 - 0 to get a solution Uk of

(18 rTT - k 2(u ~f K(x,kU)) - 0 0 < x < Wr

u 0 )- 0 - u(,T) ; u (x, T + 2w) - u (x, r)

with C k N I(u k k,OK) < I4k. Moreover for K - K(k)

sufficiently large, .j II K so f (xukT,uk f(x,kr,uk)

and u k satisfies (1.4). Lastly a separate argument shows

c k > 0 so u k (0 via (f) and the form of 1.

Returning to the question of how many of the functions u

are distinct, we will first study the dependence of on

Cal'k. To do so requires a closer look at how the bound Mkc is

determined. Lemmna 1.13 of (41 provides a minimax characteriza-

tion of I(umkk,O,K) which in turn yields the bound k

Let

-span(sin jx sin nT, sin JX COBn nTIO <J,n <m

and n2 < j k2

16k a sin x sin(k 1 )T



and a k  is chosen so that l likl L2 = 1.

Set Vmk= Wik span {FkI. It was shown in [4] that

(1.9) 0 < cmk < max I(u ;k,B,K)
ue Vmk

(Note that I- -- as Hull 2 via (f3) so we

have a max rather than a sup in (1.9)). Let z = Zmk denote

the point in Vmk at which the max is attained. We can

write

(1.10) z = ilzll 2 (YE + 6k )

L

where E e Wmk with II'IIL2 = 1 and 2 + 62 = 1.

Substituting (1.10) into (1.9) and using the form of I yields

(1.11) k 2 2w i x,kT,z)dx dT < 1 7r (z 2-_ k 2z2 dxdT

f Kxktzd- f f T(z
0 0 - 0 0 d

~6 2  2 7 2 iT
< llz122 k - k 2o2)dx dT

L 0 0 T

<2 k

where R is independent of k and m (as well as 8

and K). Since F satisfies (1.1) with a constant
* K

independent of K, (1.11) shows that

" - a _ RI Izi 12
(1.12) k(a ltz II a' ) < l2

LU 
L
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By the Holder inequality we find that

(1.13) k(a 4 IZIIL 2 - a3 ) < M111z1 2
2

L L

which implies that

(1.14) lz1 L2 :i Mi

with R1 independent of m,k,,K. Returning to (1.9)

and using (1.14) yields

(1.15) cmk = I(umk;k,B,K) < M2 k

with M2  independent of m,k,B,K. It follows that ck

satisfies the same estimate:

(1.16) ck = I(uk;Jc,O,K) < M2 k

To complete the proof of Theorem 1.2, we will show that

(1.16) is violated if more than finitely many solutions uk

correspond to the same function in the original t variables.

To present the idea in its simplest setting, suppose first that

all of the functions uk(x,T) are reparameterizations of

ul(X,t). Then Uk(XT) = U1 (x,kT) = u1 (X,t) u(x,t). For

K = K(k) sufficiently large we have

L A
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2r r (r1  2 2 U 2

(1. 17) ck = f 2 UkT k 2 Ukx + F (x, kTr, Uk dx dT

27rk 7r 1 2 2
= k f f (.1(Ut -u) - F(x,t,u)] dx dt

= k 2 ,2 j 2r f i l2 u2) F(x,t,u)] dx dt
0 0 1 (t ux

since u is 27r periodic in t. The positivity of

and (1.17) show that C k tends to infinity like k2

contrary to the bound (1.16). This argument shows (1.3) has

at least one 27Tk periodic solution distinct from u 1 (x,t).

For the general case we argue similarly. Suppose two

solutions u.i(x,'r) and uk (X,T) correspond to the same

t tfunction of (x,t), i.e. u.i(x,T) = U (X, I) = v(x,t) =-Uk(X.]E).

Thus u.i(X,T) = V(X,jT) and uk (x,T) =v(x,kT). Since

v(x,t) is both 2Tr j and 27rk periodic in t, there

are jl, kl, a e IN such that j = ojl, k =ak1  and v

is 27ra periodic in t. (We can take a to be the

greatest common divisor of j and k). Arguing as in

* (1.17) yields

2nrk 1T12 2
*(1.18) ck k f f ['1(vt 2 v) 2 F(x,t,v)] dx dt

0 0

k2  2na nr 2 2
Cr f f 11(v~ v)- F(x,t,v)] dx dt

0 0 t

F and
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(1.19) c A

Thus if there is a sequence Uk of solutions of (1.4)
k

corresponding to the same function v, by (1.18) - (1.19)

we have

k?
(1.20) Ci i th-

k

where a e IN is the greatest common divisor of {ki}.

C like contrary to (1.16) and the proof

of Theorem 1.2 is complete.

Remark 1.21: Note that if F(x,t,r) and F K satisfy

F,FK > alIrl'

for some v > 2, it follows from (1.11) that

1

lizl < a5 k

and therefore

2 v-4
v- k v- 2

Sck <a 6 k a6 k

Thus if v < 4, ck 0 as k + . Further restrictions

on F (as in [1]) imply uk 0 as k o.
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Remark 1.22: Existence of infinitely many distinct subharmonic

solutions was also established in [1] for a family of subqua-

dratic Hamiltonian systems, i.e. Hamiltonian systems where

H grows less rapidly than quadratically as Izi =. There

are several existence theorems for periodic solutions of semi-

linear wave equations in which the primitive of the forcing

term is subquadratic [6-10]. We believe the conclusions of

this paper carry over to the subquadratic case via the arguments

used here and in [1].

V 4..
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